Skip to content
regresion_lineal

Regresión Lineal Simple

Vamos a intentar predecir y crear un modelo lineal, regresión lineal simple. Buscará todas las rectas posibles y nos dirá cuál es la recta que más se acerca la distancia de la propia recta a los puntos de referencia.
Es la línea de tendencia que más se ajusta a los datos ofrecidos.

Variables

Categóricas

  • Nominales -> Rojo,verde,azul,… (Factores)
  • Ordinales -> Pequeño,Mediano,Grande, A,B,C (Tiene un orden)

Numéricas

  • Discretas -> 800 empleados (objetos que podemos contar sin usar decimales)
  • Continuas -> El peso, la altura, entran todo tipo de números.

La palabra regresión

LLamamos análisis de regresión al precio estadístico de estimar las relaciones que existen entre variables.
Se centra en estudiar las relaciones entre una variable dependiente de una o varias variables independientes.

Regresion.png

Regresión Lineal Simple

Regresion lineal.png

Lo que hará nuestro algoritmo de regresión lineal es sumar todas las diferencias, las rectas entre yî y ŷî, las elevará al cuadrado porque algunas serán positivas y otras negativas. De todas las rectas se que con aquella que minimiza los cuadrados de las diferencias entre el dato real y la predicción.